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1 Introduction to Probability

1.1 Probability spaces and random variables

Definition 1.1. A probability space1 (Ω,F ,P) is a measure space such that P(Ω) = 1.
We call Ω the sample space and its elements ω ∈ Ω outcomes. An event is a subset
E ∈ F . The probability of an event is 0 ≤ P(E) ≤ 1.

Remark 1.1. We can think of restricting events to lie in the σ-algebra in the following
sense: this restricts the amount of information we have and therefore the possible events
we can consider.

Definition 1.2. When |Ω| < ∞, and F = P(Ω), we can define a probability vector
(pω)ω∈Ω by pω := P({ω}).

In this case, P(A) =
∑

ω∈A pω for all A ⊆ Ω. Also, pω ≥ 0 and
∑

ω pω = 1.

Definition 1.3. Let (Ω,F), (X,B) be measure spaces. An X-valued random variable
on Ω is a (F/B)-measurable function ϕ : Ω→ X.

Often, X = R or a finite set. The idea is that once you have an outcome in Ω, the
random variable ϕ tells you what value the outcome corresponds to.

Definition 1.4. ϕ−1[B] = {ϕ−1[A] : A ∈ B} is called the σ-algebra generated by ϕ.
We denote this as σ(ϕ).

Lemma 1.1. This is indeed a σ-algebra.

1In the 1920s, Kolmogorov realized that measure theory was the perfect language to describe probability
in a rigorous mathematical setting.
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1.2 Distributions and expectation

Definition 1.5. Let ϕ : (Ω,F ,P) → (X,B) be a random variable. We call the map
A 7→ P(ϕ−1[A]) for A ∈ B is called the image or pushforward of P under ϕ. We denote
this as ϕ∗P.

Lemma 1.2. ϕ∗P is a measure on (X,B).

Definition 1.6. If P is clear from context, ϕ∗P is called the law or distribution of ϕ.

Proposition 1.1. Let g : X → R be measurable. Then g ∈ L1(ϕ∗P) if and only if
g ◦ ϕ ∈ L1(P). In this case,

∫
g dϕ∗P =

∫
g ◦ ϕdP.

Proof. This is true for indicator functions by definition. It is then true for simple functions
by linearity, and the monotone convergence theorem gives that this is true for nonnegative
functions. By linearity, it is true for measurable functions.

Definition 1.7. If f is an R-valued random variable on (Ω,F ,P), we say that f has finite
first moment if f ∈ L1(P). The expectation of f is EP [f ] = E[f ] =

∫
f dP.

1.3 Stochastic processes and independence

Definition 1.8. A stochastic process is an indexed family (ϕi)i∈I of random variables
on the same (Ω,F ,P). From these, if ϕi : Ω → Xi, define ϕ : Ω →

∏
i∈I Xi sending

ω 7→ (ϕi(ω))i∈I . ϕ is a random variable when
∏

iXi is given the product σ-algebra⊗
i Bi, generated by {

∏
iAi : Ai ∈ Bi ∀i, Ai = Xi for all but finitely many i}. ϕ∗P is a

probability measure on (
∏

iXi,
⊗

i Bi) called the joint distribution of (ϕi)i.

Remark 1.2. Knowing the distribution of each ϕi does not tell you all the information
that ϕ has. In general, ϕ is much more informative than the individual distributions.

Definition 1.9. Let A ⊆ Ω have P(A) > 0. For any other B ⊆ Ω, its conditional
probability given A is P(B | A) = P(B ∩A)/P(A).

Lemma 1.3. Let P(A) > 0. Then P(· | A) is a new probability measure on (Ω,F) such
taht P(A | A) = 1.

Definition 1.10. A and B are independent if P(B | A) = P(B). That is, P(A ∩ B) =
P(A)P(B).

Definition 1.11. A1, A2, . . . , An ⊆ Ω are independent if P(B1 ∩ · · · ∩Bn) =
∏n

i=1 P(Bi)
whenever Bi ∈ {Ai,Ω \Ai} for all i.

Definition 1.12. If G1, . . . ,Gn are σ-subalgebras of F , they are independent if A1, . . . , An

are independent for all Ai ∈ Gi. Random variables ϕ1, . . . , ϕn are called independent if
σ(ϕ1), . . . , σ(ϕn) are independent.
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Definition 1.13. An infinite collection of events/σ-algebras/random variables is inde-
pendent if all finite subcollections are independent.

Definition 1.14. (ϕi)i are independent and identically distributed (iid) if they are
independent, all take values in the same X¡ and ϕi∗P = ϕj∗P for all i, j.

3


	Introduction to Probability
	Probability spaces and random variables
	Distributions and expectation
	Stochastic processes and independence


